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We present a novelmethod for engineering ultra-flattened-dispersion photonic crystal fiberswith uniform air holes
by rotations of inner air-hole rings around the fiber core. By choosing suitable rotation angles of each inner ring,
theoretical results show that normal, anomalous, and nearly zero ultra-flattened-dispersion fibers in wide spectra
ranges of interest can be obtained alternatively. Moreover, in our dispersion sensitive analysis, these types of fibers
are robust to variations from optimal design parameters. Themethod is suitable for the accurate adjustment of fiber
dispersionwithin a small range, whichwould be valuable for the fabrication of ultra-flattened-dispersion fibers and
also have potential applications in wide-band high-speed optical communication systems. © 2014 Chinese Laser
Press
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1. INTRODUCTION
In high-speed optical communication systems, fiber
dispersion is a crucial factor that has great influence on the
bandwidth of information transmission. Conventionally, in or-
der to decrease the dispersion effect, dispersion-shifted fiber
and zero-dispersion single-mode fiber are designed for com-
munication wavelengths. In recent years, photonic crystal
fiber (PCF) [1], has became a preeminent method for trans-
mitting information because of its unique optical properties
and flexible designs. The variety of possible geometries in
PCF offers great possibility to control its dispersion proper-
ties, particularly useful in designing dispersion flattened fibers
over a wide range of wavelengths.

Over the last decade, various PCFs have been proposed and
studied to obtain ultra-flattened-dispersion property. Initially,
characterized by the lattice constant and hole diameter, rela-
tive flattened dispersion can be achieved [2,3]. After that, in
order to improve dispersion flatness over a wider bandwidth,
more complicated design methods have been exploited, such
as doping additional materials such as GeO2 in the central part
of the silica core [4,5], changing the diameter of the air holes
belonging to the first two or three inner rings [6,7], modifying
the circular air holes into other shapes [8–10], selectively
filling the PCF with liquids [11], designing a hybrid core region
with three-fold symmetry for the fiber [12], assembling addi-
tional defected air holes in the central core region [13], or
combining two or more of these methods, for instance, intro-
ducing both GeO2-or F-doped silica and also modifying the
circular holes into hollow rings in the PCFs [14]. While won-
derful dispersion flatness performance could be obtained, the
modifications either broke the uniformity of the holes’ size or

introduced additional materials, which will raise complexity
during the design of fibers. In addition, minor variations of
these design parameters that would be introduced in the fab-
rication process are likely to cause a large change of the
dispersion characteristic. Therefore, the realization of ultra-
flattened-dispersion PCFs with low sensitivity by a relatively
simple method is still a challenge.

In this paper, we propose a novel design approach for
achieving ultra-flattened-dispersion PCFs over wide wave-
length regions with low sensitivity just by rotations of two
inner air-hole rings around the fiber core. The approach can
obtain ultra-flattened-dispersion PCFs while maintaining the
uniformity of the PCFs’ air-hole size. Numerical results show
that our proposed method for control of dispersion in PCFs
works well. The paper is organized as follows. In Section 2,
the topology and design principle of proposed PCFs are pre-
sented. Then, in Section 3, dispersion engineering for nearly
zero-dispersion PCFs, normal dispersion PCFs, and abnormal
dispersion PCFs is investigated in detail. In Section 4, a sen-
sitive analysis is performed to determine the variations of the
dispersion characteristic arising from inevitable imprecision
angles of the inner rings. Finally, conclusions are given in
Section 5.

2. SCHEMATIC TOPOLOGY AND DESIGN
PRINCIPLE
The schematic cross section of the proposed PCF topology
structure is depicted in Fig. 1. The host material is pure silica,
and the number of air-hole rings is assumed to be 11. It is
composed of circular air holes arranged in a triangular array
of lattice constant Λ with the central air hole missing, and all
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air holes have a uniform diameter d. As denoted in the right
panel of Fig. 1, the central core area of the fiber is additionally
modified by rotations of the innermost two air-hole rings
around the fiber core with angles of α degrees and β degrees
relative to their original positions to obtain ultra-flattened
dispersion, respectively. And the original positions of air holes
in the inner two rings are also denoted in the right panel of
Fig. 1 as dashed circles.

It is clear that there are four structure parameters, namely
Λ, d, α, and β, which can be tuned to achieve the ultra-
flattened-dispersion PCFs. Hence, our design strategy is
performed in two steps. First, relatively dispersion flattened
PCFs are obtained by varying parameters Λ and d [3]. Then,
we try to tailor the dispersion of PCFs further by carefully
adjusting both α and β. A plane-wave expansion method with
a lattice resolution of 32 is employed to obtain highly accurate
dispersion values of the fundamental mode of fibers in the
numerical calculations [15]. And the material dispersion is
directly included in the calculations through the Sellmeier
equation. In order to get a highly accurate result, a minimum
change step of 1° is adopted near the optimum structure
parameters.

3. DISPERSION ENGINEERING AND
ANALYSIS
In this section, we will show how to realize nearly zero-
dispersion ultra-flattened PCF, normal dispersion ultra-
flattened PCF, and anomalous dispersion ultra-flattened
PCF through dispersion engineering by our proposed topol-
ogy. We start from the achievement of nearly zero-dispersion
ultra-flattened PCF. As mentioned in Section 2, first, relatively
flattened zero-dispersion PCF is obtained by choosing
appropriate parameters Λ and d. We know the total dispersion
D is approximately equal to the sum of the geometrical
dispersion Dg and material dispersion Dm, that is, D�λ�≈
Dg�λ� � Dm�λ� ≈ Dg�λ� − �−Dm�λ��, and the slope of the –Dm

curve being fixed. Through performing a scaled Dg curve hav-
ing a liner resign with the same slope as –Dm, and meanwhile
ensuring the wavelength region where Dm behaves
linearly overlaps the wavelength region of linear behavior
of Dg, we will obtain an ultra-flattened-dispersion curve D
in the overlapping wavelength range. Reference [3] has given

the results that, by fixing d∕Λ and changing Λ, the curve of Dg

is shifted, and the slope of its linear part is modified. Mean-
while, by fixing Λ and changing d the curve of Dg is shifted,
but the slope of its linear part is approximately preserved.
According to the above conclusion, coupled with a further cal-
culation, Λ � 2.3 μm and d � 0.61 μm are chosen. Second,
dispersion is further optimized by engineering the parameters
α and β. Thus, the influence exerted by parameters α and β on
the dispersion characteristic should be investigated in detail.

Before optimizing, the tuning ranges of α and β should be
determined first. Due to the geometric symmetry of the pro-
posed PCF structure, if we only take one of the parameters α
and β as the variation parameter and fix the other, a variation
range with a minimum period of 30° should be enough to re-
present all the cases of angle variations. For example, when β
is fixed with 0°, variation of α within 0° to 30° is enough. How-
ever, if we take α and β simultaneously as tuning factors, an
angle variation range of 60° should be required. Specifically,
when one of the parameters has a symmetric angle, it is equal
to the case of variation of only one parameter. Thus, an angle
variation range for the other parameter of 30° would be
enough for one of the parameters maintained at the symmetric
angle. For example, when β is 30°, variation of α within 0° to
30° is also enough.

Figure 2 plots the chromatic dispersion D as a function of
the wavelength λ. Figure 2(a) shows the chromatic dispersion
dependence on the change of parameter α, while β is fixed
with original degree. And Fig. 2(b) shows the chromatic
dispersion dependence on the change of parameter β, while
α is fixed. From Fig. 2, it is evident that when increasing α
or β separately from 0° to 30°, the curves all shift upward.
So variation of α or β will lead to a similar dispersion changing
tendency. And as the curve shifts upward, the chromatic
dispersion curve becomes flatter since the peak at shorter
wavelength increases slower than the valley rising at longer
wavelength.

Comparing Figs. 2(a) and 2(b), while the impact of β on the
chromatic dispersion in the long wavelength zone is much
greater than that of α, the impact of β on the dispersion in
the short wavelength zone is less sensitive. The reason can
be explained as follows. Since the innermost ring is much
nearer to the fiber central core than the second innermost
ring, the short wavelengths at first can only have a serious in-
fluence on the innermost ring, and they have less influence on
the second innermost ring. As wavelength increases, the light
can penetrate the first innermost ring and could have a direct

Fig. 1. Schematic topology of the proposed PCFs structure. The air
holes in the silica background are arranged in a triangular configura-
tion of lattice constant Λ with the central air hole missing, and all air
holes have a uniform diameter d. The first and second innermost air-
hole rings (colored green and yellow, respectively) are rotated around
the fiber core with angles of α degrees and β degrees relative to their
original positions, respectively. And the original positions of air holes
in the inner rings are denoted as dashed circles in the right panel.

Fig. 2. Chromatic dispersion D as a function of wavelength λ with
Λ � 2.3 μm and d � 0.61 μm for changing one of the design parame-
ters: (a) α is changing from 0° to 30°, while β is fixed, and (b) β is
changing from 0° to 30°, while α is fixed.
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influence on the second innermost ring too. So variation of the
second innermost ring will heavily affect the optical proper-
ties of fiber in the long wavelength zone. As shown in Fig. 3,
it also can be explained by the transverse electric field inten-
sity distributions of the fundamental mode for both short
wavelength and long wavelength. Figure 3(a) shows the trans-
verse electric field intensity distribution of the fundamental
mode at 1.45 μm for the original PCF, which is with both α
and β equal to 0°, and Figs. 3(b) and 3(c) show the electric
field intensity distributions at the same wavelength for the
maximum variations of α and β, respectively. Correspond-
ingly, Figs. 3(d), 3(e), and 3(f) show the electric field intensity
distributions at 1.75 μm wavelength for these three structure
cases as in Figs. 3(a), 3(b), and 3(c). As wavelength increases,
it is clear that variation of the second innermost ring leads to
more mode-field distribution penetrating to the cladding
compared to the variation of the first inner ring. Thus, the
chromatic dispersion is very sensitive to β. Therefore we first
use β for a coarse tuning; then, we fix β with a relative
optimized value and use α for an accurate tuning to obtain
wide-band ultra-flattened nearly zero dispersion. Here, we
focus on the chromatic dispersion curve with the lowest fluc-
tuation for a wavelength range from 1.25 to 1.65 μm. As shown
in Fig. 2(b), through a preliminary engineering, β � 20° is
selected as the parameter for the proposed nearly zero-
dispersion flattened PCF.

Then we investigate the combined influence of α and β for a
final optimization of nearly zero-dispersion fiber. Figure 4
shows the variations of the chromatic dispersion versus wave-
length λ for changing α from 0° to 59° with optimized β � 20°.
While increasing α from 0° to 20°, the dispersion curve shifts
down first and gets the lowest at 20°. Continuously increasing
α from 20° to 50°, the dispersion curve tends to rise up and
gets the highest at 50°. Finally, increasing α from 50° to
59°, the dispersion curve tends to shift downward again
and gets close to its original position. This can be explained
as follows. As α increases from 0° with a fixed β � 20°, the
difference between β and α, i.e., jβ − αj, first tends to be
smaller, and thus its variation on dispersion becomes weaker,
so the dispersion curve shifts downward before α reaches 20°.

On the contrary, once jβ − αj gets bigger again, its variation on
dispersion becomes stronger again, so the dispersion curve
shifts upward again and gets to the highest extreme at α with
50°, which is equal to the maximum jβ − αj of 30°. Finally, the
optimum dispersion curve can be obtained with α � 0° and
β � 20°, and its dispersion variations are within −1.2�
0.6 ps∕�km · nm� in a wavelength range of 1.25–1.65 μm. So
we can see that the flatness of dispersion is finely tuned by
adjusting parameters β and α.

After the design of nearly zero ultra-flattened-dispersion
PCF, normal ultra-flattened-dispersion PCF and anomalous
ultra-flattened-dispersion PCF are also proposed. The suitable
lattice constant and hole diameter have also been chosen for
them, which have the values of Λ � 2.7 μm, d � 0.75 μm and
Λ � 2.2 μm, d � 0.54 μm, respectively. The method we used
to choose these parameters for the normal flattened-
dispersion PCF and anomalous flattened-dispersion PCF is
the same as that for zero ultra-flattened-dispersion PCF. Then
based on previous experience deduced from the design of
zero ultra-flattened-dispersion PCF, the optimum normal
and anomalous ultra-flattened-dispersion curves are all easily
achieved.

In Fig. 5, we show the calculated chromatic dispersion for
changing α or β while reserving the other parameters. In the
figure, the black solid curve represents the chromatic
dispersion of the initial fiber with α � 0° and β � 0°. The blue
solid curves with various geometric shapes show the chro-
matic dispersion dependence on the changing α, while β is
unchanged. The red dashed-dotted curves with various

Fig. 3. Fundamental mode transverse electric field intensity (Et2)
distributions at 1.45 μm (upper figures) and 1.75 μm (lower figures)
wavelengths, for nearly zero-dispersion flattened PCFs with Λ �
2.3 μm and d � 0.61 μm for (a) α � 0° and β � 0°, (b) α � 30° and
β � 0°, (c) α � 0° and β � 30°, (d) α � 0° and β � 0°, (e) α � 30°
and β � 0°, and (f) α � 0° and β � 30°.

Fig. 4. Chromatic dispersion D as a function of wavelength λ with
Λ � 2.3 μm and d � 0.61 μm for changing α from 0° to 59°, while β
has an optimized value of 20°.

Fig. 5. Chromatic dispersion D as a function of the wavelength λ, for
changing structure parameters α or β from 0° to 30° while reserving
the other parameters, for (a) normal ultra-flattened-dispersion
PCF with Λ � 2.7 μm and d � 0.75 μm, and (b) abnormal ultra-
flattened-dispersion PCF with Λ � 2.2 μm and d � 0.54 μm.
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geometric shapes describe the chromatic dispersion depend-
ence on the changing parameters β, while α is unchanged. The
impact of structure parameters changing on chromatic
dispersion shown in Fig. 5(b) is similar to what we have
shown in Fig. 2. Parameter β has much greater influence on
the chromatic dispersion than α does in the long wavelength
zone, while in the short wavelength zone, α has comparable
impact on the dispersion compared with β. However, for
Fig. 5(a), the situation changes much. For the short wave-
length zone, in spite of changing α and β, the chromatic
dispersion is changed minimally. And when the wavelength
is beyond a specific value, the dispersion curve becomes
sensitive to the structure parameters. First, it is much more
sensitive to the changing of the innermost ring. And as the
wavelength increases to the long wavelength zone, the second
innermost ring also plays an important role in controlling the
fiber dispersion. The phenomena can be understood similar to
what we explained for the nearly zero-dispersion PCF in the
previous part. The different sensitivities found in these figures
would mainly arise from the different periodΛ, which we have
chosen to obtain different kinds of chromatic dispersion
behaviors. For Figs. 2 and 5(b), their periods are 2.3 and
2.2 μm, respectively. So, the dispersion behavior shown in
these figures is similar. However, for Fig. 5(a), a large period
of 2.7 μm is adopted. Therefore, only longer wavelengths are
sensitive to the change of α and β.

From the results shown in Fig. 5(a), β � 16° is selected as
the preliminary parameter for the proposed normal dispersion
flattened PCF in a wavelength range of 1.5–2.0 μm. While from
the curves shown in Fig. 5(b), β � 22° is selected as the
preliminary parameter for the proposed anomalous dispersion
flattened PCF in a wavelength range of 1.25–1.65 μm.

After that, a final optimizing process for normal ultra-
flattened-dispersion PCF and anomalous ultra-flattened-
dispersion PCF is also shown in Figs. 6(a) and 6(b). We note
that when α increases from 0° to 59°, the curves changing
tendency shown in Figs. 6(a) and 6(b) are similar to what
we have shown in Fig. 4. In the end, the optimum parameters
of α � 0° and β � 16° are selected for the normal ultra-
flattened-dispersion PCF, and its corresponding dispersion
variations are within −21.1� 0.7 ps∕�km · nm� in the wave-
length range of 1.5–2.0 μm. Also, the optimum parameters
of α � 57° and β � 22° are selected for the anomalous
ultra-flattened-dispersion PCF, and its corresponding
dispersion variations are −11.1� 0.8 ps∕�km · nm� in the
wavelength range of 1.25–1.65 μm.

4. SENSITIVE ANALYSIS
In the previous sections, various kinds of ultra-flattened-
dispersion PCFs with uniform air holes have been theoreti-
cally realized by rotations of inner two air-hole rings around
the core with specific angles. But considering the inevitable
imprecision that would be introduced during the fabrication
process, it may affect the dispersion characteristics of the
proposed PCFs. Thus, sensitive analysis regarding the impact
of the fluctuation of the design parameters on the dispersion
characteristics should be performed.

Due to the fact that the PCFs can be fabricated with high
lattice uniformity and with high precision to the cladding hole
diameter [13,16], we only focus our sensitive analysis on the
air-hole positions of the inner two rings due to inaccurate
angles of the rings. Here, taking the ultra-flattened zero-
dispersion PCF for example, a set of calculations is performed
to show the impact of variation of α or β on the chromatic
dispersion, in which either α or β or α and β is deviated
�3°, from the optimum point α � 0° and β � 22°. As plotted
in Fig. 7, we note even in the extreme condition that α devi-
ated 3° and β has the inverse change; the maximum variation
of dispersion is still within 1.05 ps∕�km · nm� around the
nominal dispersion value. In fact, according to the fabrication
date in Ref. [16], the extreme situation will not be likely to
occur in our cases. As a result, we can draw a conclusion that
possible variations of the design parameters of the proposed
fibers will not influence the dispersion property much.

Further research is also carried out to figure out why the
fiber is not sensitive to fluctuations of the optimum design
parameters. The impact of variations of optimum parameters
α and β on the effective mode area of the fundamental mode is
calculated and analyzed. The design parameters that we
choose are the same as in Fig. 7, and their corresponding ef-
fective mode areas at the wavelength of 1.55 μm are given in
Table 1. It is easy to find the correspondence between the ef-
fective mode area and the chromatic dispersion curve. As the
effective mode area increases, the chromatic dispersion shifts
up. The largest variation of effective mode area and the largest
variation of dispersion have the same parameters. And even in
the worst condition, the maximum variation of effective mode
area to the nominal value is only 0.5441 μm2. Therefore, it is
easy to say that the fiber is not sensitive to fluctuations of its
optimum design parameters. Thus, our proposed fiber is a
robust design.

Fig. 6. Chromatic dispersion as a function of the wavelength λ, for
the changing α (a) normal ultra-flattened-dispersion PCFwith β � 16°,
Λ � 2.7 μm, and d � 0.75 μm, and (b) abnormal ultra-flattened-
dispersion PCF with β � 22°, Λ � 2.2 μm, and d � 0.54 μm.

Fig. 7. Chromatic dispersionD as a function of the wavelength λwith
Λ � 2.3 μm and d � 0.61 μm; α or/ and β are varied from their opti-
mum values of α � 0° and β � 20°.
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5. CONCLUSIONS
In conclusion, we have demonstrated a novel method for real-
izing ultra-flattened-dispersion PCFs with uniform air holes by
rotations of each inner air-hole ring wholly around the fiber
core. It only uses four parameters, namely Λ, d, α, and β,
to control the dispersion of PCFs. Λ and d take charge of
the regulation of dispersion in a wide range, while α and β
are responsible for the accurate adjustment of dispersion in
a small range. Theoretical results show that nearly zero, nor-
mal, and anomalous ultra-flattened-dispersion fibers in wide
spectra ranges of interest all can be obtained. These proposed
fibers reduce the difficulty of designs compared to that with
multiple different submicrometer air-hole sizes or introduce
other kinds of materials. Sensitive analysis also shows that
possible fluctuation of design parameters will not affect the
desired dispersion property seriously. Moreover, this method
can work as a companion for the existing dispersion tailoring
technologies to accurately adjust dispersion within a small
range. Thus, we believe our proposed fiber structure is a
robust design, which would have potential applications in
wide-band high-speed optical communication systems.
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